Inorganic Chemistry

New Metal-Only Lewis Pairs: Elucidating the Electronic Influence of *N*-Heterocyclic Carbenes and Phosphines on the Dative Pt-Al Bond

Jürgen Bauer, Rüdiger Bertermann, Holger Braunschweig,* Katrin Gruss, Florian Hupp, and Thomas Kramer

Institut für Anorganische Chemie, Julius-Maximilias-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Supporting Information

ABSTRACT: The synthesis and full characterization of a new heteroleptic *N*-heterocyclic carbene (NHC)—phosphine platinum(0) complex and formation of its corresponding alane adduct is reported. The influence of the ligands on the Lewis basic properties was studied via multinuclear NMR-spectroscopy, X-ray analyses, and density functional theory (DFT) calculations. Consistently, the effect of changing the halogens

upon the Lewis acid properties of aluminum halides was studied by X-ray analysis and DFT calculations.

INTRODUCTION

Currently, the concept of metal-centered Lewis basicity is under intense investigation in organometallic research, and we are particularly interested in unsupported metal-only Lewis pairs (MOLPs). Lewis basic behavior of electron-rich transition metal complexes was observed in the early 1960s by the groups of Vaska and Wilkinson by means of rhodium and iridium species.^{1,2} Subsequently, studies on the reactivity of trans- $[IrCl(CO)(PPh_3)_2]$ (1) toward protic substrates played a central role in the development of metal-centered Lewis basicity.³ Early attempts to apply metal-centered nucleophilicity resulted in Lewis acid–base adducts of metals with small molecules, for example, $BF_{3,}^{4}$ although the proposed borane complexes were later refuted.⁵ Nonetheless this work led to the development of metal-centered Lewis basicity as a synthetic concept in inorganic chemistry.⁶ In the following years, halfsandwich compounds of the general formula $[CpL_nM]$ (M = Co, Rh, Ir) predominantly served as examples of metalcentered Lewis basicity. For instance, the group of Werner studied the Lewis basic properties of the complex [Cp- $(Me_3P)_2Co]$ (2), which reacted with a variety of electrophiles (3-5).^{7,8} Using analogous rhodium compounds, Mayer et al. examined half-sandwich adducts of the type [Cp(R₃P)₂Rh- AlR'_{3} (R = Me, Et; R' = Me, Et) (6–8) by multinuclear NMR spectroscopy. Thereby, the Lewis acidic behavior of certain alanes toward transition metal Lewis bases was introduced, and kinetic and thermodynamic data were provided.⁹ Additionally, $[Cp(Me_3P)Rh(Al_2Me_4Cl_2)]$ (9) could be studied by X-ray structural analysis. $[(Cp^*)(Me_3P)(H)_2Ir-AlPh_3]$ (10) (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl) was reported by Bergmann et al. as the first structurally characterized neutral transition metal aluminum complex. However, according to Xray structural analysis the Ir-Al bond of 10 is supported by two H-atoms (Figure 1).¹⁰ Additional density functional theory (DFT) calculations carried out by Lelj on this complex indicate a significant charge donation from the transition metal to the

aluminum atom.¹¹ Descending the third row of the periodic table, Fischer delivered an example of a transition metal gallium adduct, the complex $[Cp^*(Cp^*Ga)_2Rh-GaCl_3]$ (11).¹²

The coordination chemistry of the lightest group 13 homologue, boron, has since been studied in a variety of different ligand classes, mainly three-coordinate boryl ligands, because of their essential roles in the transition metal-catalyzed hydroboration, diboration, and other boron addition reactions to unsaturated organics. $^{13-17}$ As is well-known, the reaction of electron rich late transition metal complexes with boron halides results in oxidative addition of a B-X bond.^{18,19} This was consistently shown by our group using the complex [(Cy₃P)₂Pt] (12), affording trans-(halo)(boryl) complexes.²⁰⁻²³ Accordingly, in a recent DFT study Sakaki et al. proposed a possible mechanism for the oxidative addition of boranes to late transition metals.²⁴ The formation of the final trans-(bromo)(boryl) platinum(II) complex is enabled by coordination of the borane to platinum(0), resulting in a complex that can be considered as a Lewis acid-base adduct. In conclusion it seems that for Lewis acidic molecules with appropriate empty orbitals, oxidative addition may proceed by a prior $M \rightarrow E$ donation.²⁴ Similarly, the reaction of the heavier homologues GaBr₃ and GaI₃ with late transition metals results in oxidative addition products: trans-(halo)(gallyl) complexes.²⁵ In contrast, $GaCl_3$ follows a different reaction pathway, namely, the formation of an *unsupported* Lewis acid–base adduct.²⁵ Accordingly, Frenking et al. indicated, using DFT calculations on late transition metal adduct complexes with the general formula $[(Me_3P)_2M-EX_3]$ (M = group 10 metal; E = group 13 element; X = halogen), that M–E (E = Al, Ga) bond strength increases in the order F < Cl < Br < I, in agreement with the trends of Lewis acidity of boron halides and in the order F > Cl > Br > I for heavier group 13 halides.^{26,27}

Received: November 22, 2011 Published: May 1, 2012

Figure 1. Metal-complexes 3-8, 10, 11.

Herein we report the synthesis and full characterization of the new heteroleptic NHC-phosphine-Pt(0) complex $[(IMes)(iPr_3P)Pt]$ (13) (IMes = N,N'-bis(2,4,6trimethylphenyl)imidazol-2-ylidene). The reactivity toward AlX₃ was investigated, and the corresponding alane adducts $[(IMes)(iPr_3P)Pt-AlX_3]$ (14 X = Cl, 15 X = Br) were fully characterized. To the best of our knowledge, the complex $[(IMes)(iPr_3P)Pt-AlBr_3]$ (15) is the first example of a heteroleptic phosphine/NHC platinum metal base with the Lewis acid AlBr₃. For structural and spectroscopic comparison the alane adducts $[(iPr_3P)_2Pt-AlX_3]$ (16: X = Cl, 17: \hat{X} = Br) were synthesized. Aluminum chloride was employed in these studies as it is widely used as a strong Lewis acid.^{28,29} The influence of NHC and R₃P ligands on the Lewis basicity of Pt(0) complexes was inferred on the basis of structural, spectroscopic, and computational data. For compounds 16 and 17, both 27 Al NMR and 195 Pt NMR spectra were obtained, both of which displayed a ${}^{1}J({}^{27}$ Al- 195 Pt) spin-spin coupling to the best of our knowledge the first time this coupling has been observed.

RESULTS AND DISCUSSION

Synthesis of NHC-Containing Pt(0) Complexes. To gain a better understanding of the dative bond between two metals, our group employed the well-established transition metal Lewis base $[(Cy_3P)_2Pt]$ (12) to synthesize *unsupported* MOLPs containing the d-block metal platinum and representative Lewis acidic s-, p-, and d-block metal fragments. The reactions of the strong Lewis acids BeCl₂, AlCl₃, GaCl₃, and ZrCl₄ with 12 resulted in MOLPs of the general formula $[(Cy_3P)_2Pt-ECl_n]$ (E = Be, Al, Ga, Zr, n = 2, 3, 4) (18–21) (Figure 2).^{25–32} Hence, we were interested in varying, and

PCy ₃	PCy ₃	PCy ₃	PCy ₃	SIMes		
Pt → BeCl ₂	∣ Pt → AlCl ₃	Pt → GaCl ₃	Pt → ZrCl₄	Pt → AICl ₃		
PCy ₃	PCy₃	PCy ₃	PCy ₃	I PCy₃		
18	19	20	21	23		
Figure 2. Metal-only-Lewis pairs 18-21 and 23.						

preferably increasing, the electron-donating properties of complexes of the type $[L_2Pt]$ and thus prepared new heteroleptic 14-electron platinum(0) complexes and their corresponding AlCl₃ adducts using NHCs (*N*-heterocyclic carbenes), for example, $[(SIMes)(Cy_3P)Pt]$ (22) and its alane adduct $[(SIMes)(Cy_3P)Pt-AlCl_3]$ (23), respectively (SIMes = N,N'-bis(2,4,6-trimethylphenyl)imidazolylidene). Consequently, the direct influence of NHCs on the Lewis basic properties of the central metal was analyzed.³³

In general, the influence of ligands can be varied in terms of their steric and electronic properties. An elegant method for quantification of the steric demand of various ligands is the "buried volume" method, developed recently by Nolan and Cavallo.^{34,35} Alternatively, the analysis of the Tolman's electronic parameters (TEP) can be used for comparison of the electron-donor ability of the ligands.³⁶⁻³⁸ A pioneering attempt to compare the steric and electronic properties of several alkyl and aryl phosphines was made by Tolman, comparing spectroscopic properties of transition metal phosphine complexes.³⁶ On a smaller scale, our group examined several platinum complexes by multinuclear NMR spectroscopic and X-ray structural analyses to verify the properties of $PiPr_3$ and PCy_3 .³⁹⁻⁴¹ It was also found that the larger and more electron-donating the phosphine, the higher the catalyst activity in olefin metathesis.⁴² In particular, PCy₃ turned out to be the ligand of choice in the famous "Grubbs 1st generation catalyst".⁴² Several years later the substitution of one phosphine by one N-heterocyclic carbene led to a phosphine NHC complex with increased catalytic activity, the so-called "Grubbs 2nd generation catalyst".43,44 Further attempts should be made to vary the ligand sphere of the complexes $[L_2Pt]$ by reducing the steric demand of the PR₃ ligands. As shown below, $PiPr_3$ is the least σ -electron donating ligand of the mentioned ligands (Table 1). However, these measures of steric hindrance are not without controversy, as the $%V_{\rm bur}$ of PiPr₃ is greater than PCy₃, yet the cone angle is smaller.^{45,46}

Table 1. TEP and %V_{bur} for PiPr₃, PCy₃, IMes, and SIMes

	PiPr ₃	PCy ₃	SIMes	IMes		
TEP [cm ⁻¹] (Ni(CO) ₃ L)	2059 ^a	2056 ^a	2052 ^b	2050 ^b		
$%V_{\rm bur}$ (LAuCl) ^c	34.0 ^d	33.4 ^d	36.9 ^e	36.5 ^e		
cone angle [deg] ^c	160	170				
^{<i>a</i>} Ref 34. ^{<i>b</i>} Ref 45. ^{<i>c</i>} Ref 46. ^{<i>d</i>} M $-L$ = 2.28 Å. ^{<i>e</i>} M $-L$ = 2.00 Å.						

To vary the steric and electronic properties of homo- and heteroleptic platinum complexes, $[(iPr_3P)_2Pt]$ (24) was used as starting material for the synthesis of the heteroleptic platinum(0) complex $[(IMes)(iPr_3P)Pt]$ (13). To this end, 24 was stirred with a stoichiometric amount of IMes in a ligand-exchange reaction at ambient temperature in hexane. As 24 is obtained from the tris(phosphine) complex $[(iPr_3P)_3Pt]$ (25) upon heating or in vacuo,^{47,48} we also reacted 25 directly with equimolar amounts of IMes in hexane. Multinuclear NMR spectroscopy of the reaction mixture, as well as a color change from colorless to yellow, revealed complete consumption of the starting materials and formation of $[(IMes)(iPr_3P)Pt]$ (13), which was isolated by crystallization from hexane at -30 °C in 60% yield.

Substitution of one phosphine by an NHC causes a slight high-field shift of the ${}^{31}P{}^{1}H{}$ NMR spectroscopic resonance of

13 to $\delta = 69.4$ ppm (24: $\delta = 74.0$ ppm). This is in accord with previous findings, particularly in case of the synthesis of [(SIMes)(Cy₃P)Pt] (22) ($\delta = 58.4$ ppm, ${}^{1}J_{P-Pt} = 3640$ Hz) from [(Cy₃P)₂Pt] (12) ($\delta = 62.3$ ppm, ${}^{1}J_{P-Pt} = 4160$ Hz) by phosphine/carbene-exchange.³³ Additionally, the coupling constants are somewhat smaller (13: ${}^{1}J_{P-Pt} = 3897$ Hz) compared to the starting material 24 (${}^{1}J_{P-Pt} = 4104$ Hz). These spectroscopic parameters (Table 2) are in line with recent

Table 2. NMR Spectroscopic Parameters in Solution of Compounds 12–17, 19, 24, 27

	${}^{31}\mathrm{P}{\{}^{1}\mathrm{H}{\}}^{a}$	${}^{1}J_{P-Pt}^{b}$	${}^{13}C{}^{1}H{}^{a,c}$	195 Pt{ 1 H} a	$^{27}\text{Al}^a$	${}^{1}J_{\rm Al-Pt}{}^{b}$
12	62.3	4160		-6501		
19	53.5	3032		d	67.5	2034
13	69.4	3897	201.5	-6290		
14	56.9	2988	179.7	d	68.9	2100
15	53.5	2980	167.9	d	42.7	2200
16	65.5	3034		-5550	68.5	1933
17	63.1	3061		-5410	44.6	1999
24	74.0	4104		-6590		
27	51.2	3046		d	41.3	2150

 ${}^a\delta$ in ppm. ${}^b\mathrm{Coupling}$ constants in Hz. ${}^c\mathrm{Signal}$ of carbenoid carbon. ${}^d\mathrm{Not}$ detected.

findings, which indicate decreased Pt–P bond strengths as a result of the enhanced *trans*-influence of the NHC ligand.³³ The resonance of the carbenoid carbon atom in the ¹³C{¹H} NMR spectrum of **13** (δ = 201.5 ppm) is in the expected range for late transition metal NHC complexes, such as [(IMes)₂Pt] (**26**) published by Arduengo et al. (δ = 197.5 ppm).⁴⁹ An additional measurement of the ¹⁹⁵Pt{¹H} NMR resonances revealed a slight downfield shift for compound **13** (δ = -6290 ppm) relative to its precursor complex **24** (δ = -6590 ppm). These findings are similar to the complex [(SIMes)(Cy₃P)Pt] (**22**) (δ = -6151 ppm) and its precursor complex [(Cy₃P)₂Pt] (**12**) (δ = -6501 ppm). Overall, the spectroscopic similarities between **22** and **13** are obvious, indicating closely related compounds despite their different ligands.

Light yellow crystals suitable for X-ray structure determination were obtained from a hexane solution at -30 °C. Complex 13 crystallizes in the space group $P\overline{1}$ and displays the expected overall linear geometry around the platinum center (Figure 3). A comparison with the above-mentioned complex 26 reveals comparable structural features, such as C-Pt-X

Figure 3. Molecular structure of 13. Relevant bond lengths [Å] and angles [deg]: Pt-C1 1.996(2), Pt-P 2.208(1); C1-Pt-P 175.71(7). Ellipsoids are drawn at the 50% probability level. Ellipsoids of the ligands and hydrogen atoms are omitted for clarity.

angles (13 (X = P): $175.71(7)^{\circ}$, 26 (X = C): $177.4(3)^{\circ}$) and Pt-C distances, respectively (13: 1.996(2) Å, 26: 1.959(8) Å).

To provide information on the propensity of the homoleptic bis(phosphine) complex 24 and the new heteroleptic species 13 to form MOLPs, we subsequently targeted the synthesis of the alane adducts $[(IMes)(iPr_3P)Pt-AIX_3]$ (14: X = Cl, 15: X = Br) and $[(iPr_3P)_2Pt-AIX_3]$ (16: X = Cl, 17: X = Br), respectively.

Synthesis of Lewis Acid–Base Adducts. In analogy to previous results, the MOLPs 14, 15 and 16, 17 were synthesized by stirring the precursors 13 and 24 in benzene at ambient temperature with equimolar amounts of $AlCl_3$ or $AlBr_3$. These reactions yielded the expected T-shaped Lewis acid–base adducts [(IMes)(*i*Pr_3P)Pt–AlX_3] (14: X = Cl, 15: X = Br) and [(*i*Pr_3P)_2Pt–AlX_3] (16: X = Cl, 17: X = Br) according to Scheme 1.

Scheme 1. Formation of the Complexes $[(IMes)(iPr_3P)Pt-AlX_3]$ (14 = Cl, 15 = Br) and $[(iPr_3P)_2Pt-AlX_3]$ (16 = Cl, 17 = Br).

The formation of the MOLPs is confirmed by multinuclear NMR spectroscopy in solution. For the heteroleptic adduct 14 the ³¹P{¹H} NMR spectrum reveals a singlet at δ = 56.9 ppm flanked by Pt satellites (¹*J*_{P-Pt} = 2988 Hz), and for 15 the ³¹P{¹H} NMR spectrum shows a signal at δ = 53.5 ppm (¹*J*_{P-Pt} = 2980 Hz, while the bis(phosphine) adduct 16 shows a singlet at δ = 65.5 ppm (¹*J*_{P-Pt} = 3034 Hz) and 17 shows a signal at δ = 63.1 ppm (¹*J*_{P-Pt} = 3061 Hz). Altogether, the high-field shift of the ³¹P{¹H} NMR resonances and the decrease of the ¹*J*_{P-Pt} coupling constants by about 1000 Hz in comparison to those of the precursors 13 (δ = 69.4 ppm, ¹*J*_{P-Pt} = 3897 Hz) and 24 (δ = 74.0 ppm, ¹*J*_{P-Pt} = 4104 Hz) is in good agreement with analogous systems, for example, [(Cy₃P)₂Pt-AlCl₃] (19) (δ = 53.5 ppm, ¹*J*_{P-Pt} = 3046 Hz).³¹

¹⁹⁵*Pt*{¹*H*} and ²⁷*Al NMR* Spectra of the Bisphosphine *Adducts* **16**, **17**, **19**, and **27**. We were able to obtain relatively sharp ¹⁹⁵*Pt*{¹*H*} and ²⁷*Al NMR* spectra with well resolved spin–spin coupling information for the symmetrical bis-(phosphine) compounds **16** and **17**. Although ²⁷*Al* with its high quadrupole moment is involved in the spin system, all couplings were observable, because of the axial symmetry of the complexes **16** and **17**, leading to a small electric field gradient

Figure 4. ¹⁹⁵Pt{¹H} NMR (left) and ²⁷Al NMR (right) spectra of 16. The experimental ¹⁹⁵Pt{¹H} NMR spectrum (left, bottom) was recorded at 107.5 MHz with 200000 scans, recycle delay 0.8 s, acquisition time 0.2 s, and processed with a line broadening factor of 30 Hz. The simulated ¹⁹⁵Pt{¹H} NMR spectrum (left, top) was simulated with the coupling constants extracted from the ²⁷Al and ³¹P{¹H} NMR spectra using a line width of 470 Hz.

(EFG) at the ²⁷Al site and a long(er) spin lattice relaxation time T₁. Scalar coupling between two spins will only appear if the spin–lattice relaxation times, T_1 , of both nuclei are sufficiently long to fulfill the relationship $2\pi J T_1 \gg 1$. If $2\pi J T_1$ for one nucleus, such as aluminum, is long enough, then splitting will be observed for the signal of the other nucleus as shown by Öhmann and Edlund.⁵⁰ On the other hand, comparison of the ¹⁹⁵Pt satellites in the ³¹P{¹H} NMR spectra (measured at 202 MHz) of compound **16** and **17** shows that they are only slightly broader than the central resonance, indicating that the chemical shift anisotropy (CSA) at the ¹⁹⁵Pt nuclei seem to be rather small. Furthermore, the relative high magnitude of the coupling constants (ca. 2000 and ca. 3000 Hz) compared with the line width in the ¹⁹⁵Pt NMR of about 470 Hz (**16**) leads to the resolved coupling pattern.⁵¹

The ¹⁹⁵Pt $\{\bar{H}\}$ NMR spectrum reveals a triplet of sextets at δ $= -5550 ({}^{1}J_{Pt-P} = 3034 \text{ Hz}, {}^{1}J_{Pt-Al} = 1933 \text{ Hz}) \text{ ppm}$ for compound 16 and a similar coupling pattern at δ = -5410 $({}^{1}J_{Pt-P} = 3061 \text{ Hz}, {}^{1}J_{Pt-Al} = 1999 \text{ Hz})$ ppm for compound 17. The coupling pattern is due to coupling of the ¹⁹⁵Pt (I = 1/2)nucleus to the spin 5/2 ²⁷Al nucleus perturbed by additional coupling to the two identical spin $1/2^{31}$ P nuclei. The chemical shift of the respective signal is between that of the bis(phosphine) complex 24 ($\delta = -6590$ ppm) and the typical shift region of *trans*-oxidative addition products ($\delta = -4780$ ppm).⁵² As shown in Figure 4 the simulation of the ¹⁹⁵Pt{¹H} NMR spectrum of compound 16 using the NMR spin system analysis module "Daisy" from the NMR Software suite Topspin 3.0 pl4 by Bruker Biospin GmbH shows a triplet of sextets which fits very well to the experiment. However the intensities of the 1:1:1:1:1:1 sextet due to the coupling from the ²⁷Al nucleus are not handled correctly by the software, because of the different T_2 relaxation times of the different spin states of the spin 5/2 nucleus ²⁷Al, which leads to different line widths in the coupling pattern. Normally the outer lines for the $\pm 5/2$ states are smaller in width and higher in intensity than the inner lines corresponding to the $\pm 1/2$ states and the $\pm 3/2$ states exhibit the broadest lines. This behavior is reflected by the experimental ¹⁹⁵Pt{¹H} spectrum in Figure 4, but could not be simulated by the spin system analysis program.

The ²⁷Al NMR spectrum reveals a singlet at δ = 68.5 ppm flanked by ¹⁹⁵Pt satellites (${}^{1}J_{Al-Pt} = 1933 \text{ Hz}$) for compound 16 and a similar coupling pattern at $\delta = 44.6$ ppm (${}^{1}J_{Al-Pt} = 1999$ Hz) for compound 17. Additional ²⁷Al NMR spectra of the PCy₃ analogues 19 and 27 revealed somewhat broader singlets at $\delta = 67.5$ ppm (${}^{1}J_{Al-Pt} = 2034$ Hz) (19) and $\delta = 41.3$ ppm (${}^{1}J_{Al-Pt} = 2150$ Hz) (27). The chemical shifts are in the typical range for AlX₃–Lewis base adducts, while the coupling constants of about 2000 Hz between ¹⁹⁵Pt and ²⁷Al proves the connectivity of the Pt-Al unit.⁵³ Again the relatively sharp and resolved ²⁷Al resonances of compound 16 and 17 indicate that the quadrupolar relaxation plays only a minor role for the ²⁷Al nucleus. Coupling constants for two-bond couplings between ²⁷Al and ³¹P are typically in the range of 12-30 Hz_{r}^{50} but a ${}^{27}Al - {}^{31}P$ coupling could not be observed either in the ³¹P{¹H} nor in the ²⁷Al NMR spectra of our abovementioned compounds. For compounds 19 and 27 it was not possible to observe ¹⁹⁵Pt{¹H} NMR signals, probably because of an increased electric field gradient at the ²⁷Al site. Another reason could be the slower tumbling in solution of the larger complex resulting in broader, unresolved NMR lines.

Discussion of Lewis Acid–Base Adducts. Single crystals suitable for X-ray analysis were obtained from a toluene solution at -30 °C (14 and 16). The complexes crystallize in space groups $P2_1/n$ (14) and C2/c (16), respectively (Figure 5). Both compounds feature the characteristic T-shaped geometry at the platinum center observed for complexes of the type $[(Cy_3P)_2Pt-ECl_n]$ (E = Be, Al, Ga, Zr, n = 2, 3, 4) (13–16) (Figure 5).^{30–32} A comparison of the structural data of 16 with 14 reveals (Table 3) very similar Pt–P bond lengths (14: 2.287(1) Å; 16: 2.308(1) and 2.324(1) Å) and P–Pt–P (16: 166.42(1)°) and P–Pt–C1 angles (14: 165.97(1)°). The

Figure 5. Molecular structures of 14 and 16. Relevant bond lengths [Å] and angles [deg]: 14: Pt–Al 2.376(1), Pt–P 2.287(1), Pt–C1 2.009(4), Al–Cl2 2.157(2), Al–Cl1 2.159(2), Al–Cl3 2.169(2); P–Pt–C1 165.97(1), Cl3–Al–Pt 109.92(5), Cl1–Al–Pt 117.72(6), Cl2–Al–Pt 111.84(6), Cl3–Al–Cl1 103.85(6), Cl3–Al–Cl2 107.65(6), Cl1–Al–Cl2 105.16(6); 16: Pt–Al 2.384(1), Pt–P1 2.308(1), Pt–P2 2.324(1); P1–Pt–P2 166.42(1), Al–Cl1 2.159(1), Al–Cl2 2.152(1), Al–Cl3 2.155(1); P1–Pt–P2 166.42(1), Cl2–Al–Pt 109.85(3), Cl3–Al–Pt 110.48(3), Cl1–Al–Pt 116.75(3), Cl2–Al–Cl3 109.68(3), Cl2–Al–Cl1 104.81(3), Cl3–Al–Cl1 104.95(3). Ellipsoids are drawn at the at the 50% probability level. Ellipsoids of the ligands, solvent molecules, and hydrogen atoms are omitted for clarity.

Pt–Al bond is oriented almost orthogonal to the L–Pt–L' axis (14: C1–Pt–Al 92.90(1)°; P–Pt–Al 101.09(4)°; 16: P–Pt–Al 96.34(2)° and 97.11(2)°) and the bond lengths are nearly identical (14: 2.376(1) Å; 16: 2.384(1) Å). Additionally, the wider Cl1–Al–Pt angle in compound 16 (Cl1–Al–Pt 116.75(3)°, Cl2–Al–Pt 109.85(3)°, Cl3–Al–Pt 110.48(3)°) is a result of a steric interaction between the chloride and the proximal *i*Pr group. Likewise, in 14 the two wider Cl–Al–Pt angles (Cl1–Al–Pt 117.72(6)°, Cl2–Al–Pt 111.84(6)°, Cl3–Al–Pt 109.92(5)°) can be accounted for by both repulsion between Cl1 and Cl3 and the platinum bound ligands.

As $PiPr_3$ is sterically somewhat less bulky than PCy_3 , the corresponding base adduct **16** displays a smaller distortion of the overall T-shaped geometry in comparison with $[(Cy_3P)_2Pt-AlCl_3]$ (**19**) as indicated, for example, by comparison of the P1-Pt-P2 angles (**16**: 166.42(1)°, **19**: 162.07(2)°).^{31,33}

Discussion of Bis(phosphine) Platinum AlBr₃ Adducts. For a structural comparison with our new compound $[(iPr_3P)_2Pt-AlBr_3]$ (17) we crystallized compound $[(Cy_3P)_2Pt-AlBr_3]$ (27). As mentioned above, we previously employed $[(Cy_3P)_2Pt]$ (12) for the synthesis of MOLPs of the general formula $[(Cy_3P)_2Pt-AlX_3]$ (X = Cl (19), Br (27), I (28)). The AlCl₃ adduct was fully characterized by both multinuclear NMR spectroscopy and X-ray structural analysis, whereas the formation of the AlBr₃ and AlI₃ adducts was indicated by multinuclear NMR spectroscopy only. For compound **27**, the ³¹P{¹H} NMR spectrum shows a singlet at δ = 51.2 ppm flanked by ¹⁹⁵Pt satellites (¹J_{P-Pt} = 3046 Hz).³¹ Compound **27** could be obtained almost quantitatively as a pale orange solid, but in contrast to the chloro species **19**, readily decomposes in toluene solution within 2–3 days at ambient temperature, forming *trans*-[(Cy₃P)₂PtBrX] (X = H (**29**), Br (**30**)) (Scheme 2).⁵⁴

Scheme 2. Formation and Decomposition of the Complex $[(Cy_3P)_2Pt-AlBr_3]$ (27).

PCy ₃ Pt PCy ₃	AIBr ₃	PCy ₃ │ Pt → AlBr ₃ │ PCy ₃	in solution 2-3 days, rt	PCy ₃ XPtBr PCy ₃
12		27		29 : X = H 30 : X = Br

Pale yellow single crystals suitable for X-ray structural analysis were obtained of both 17 and 27 from toluene solutions at -30 °C, thus allowing the first structural comparison between a L_xM-ECl_n adduct and its bromo analogue L_xM -EBr_n. Complex 17 crystallizes in the space group C2/c, the analogue 27 in the space group $P\overline{1}$, respectively. Both compounds display the expected T-shaped geometry around the platinum center (Figure 6). A comparison of the P_2Pt moieties of the chloro species (19, 16) with their respective bromo analogues (17, 27) reveals only minor differences. The Pt-Al distances in compounds 19 and 27 are virtually identical, whereas the Pt–Al distances of 16 (2.384(1)) Å) and 17 (2.368(2) Å) differ slightly by 2 pm. DFT calculations on the optimized compounds 16, 17, 19, and 27 showed nearly identical Pt-Al distances (Table 4) and so crystal packing effects could be the reason for the small deviance between theory and experiment. A closer look at the AlBr₃ groups of compounds 17 and 27 reveals subtle differences. In compound 17 the torsion angle (P1-Pt-Al-Br1: $0.47(8)^{\circ}$) reveals that the AlBr₃ group is eclipsed with respect to the P2Pt moiety. As a result the Al-Br1 bond is elongated (Al-Br1 2.325(2) Å, Al-Br2 2.316(2) Å, Al-Br3 2.313(2) Å) because of a steric interaction between the bromide and a hydrogen atom from the nearby iso-propyl group. In compound 27 the conformation is staggered (P1-Pt-Al-Br2: $87.60(4)^{\circ}$) and so the Al-Br distances are similar (Al–Br1 2.319(1) Å, Al–Br2 2.315(1) Å, Al–Br3 2.317 (1) Å). Comparison of the geometry of the Pt-bound AlBr3 with

those of amine-alane adducts derived from computational⁵⁵ and experimental studies,⁵⁶ suggests that the platinum base exerts a

Table 3. Structural Parameters of Compounds 13-17, 19, 23, 27

		C-Pt ^a	$P-Pt^{a}$	Al-Pt ^a	$L-Pt-L^{b}$
	$[(Cy_3P)_2Pt-AlCl_3] (19)$		2.299(1), 2.313(1)	2.386(1)	162.07(2)
	$[(Cy_3P)_2Pt-AlBr_3]$ (27)		2.303(1), 2.308(1)	2.380(1)	160.09(3)
	$[(SIMes)(Cy_3P)Pt-AlCl_3] (23)$	1.991(9)	2.301(2)	2.384(2)	168.3(5)
	$[(IMes)(iPr_3P)Pt] (13)$	1.996(2)	2.208(1)		175.71(7)
	$[(IMes)(iPr_3P)Pt-AlCl_3]$ (14)	2.009(4)	2.287(1)	2.376(1)	165.97(1)
	$[(i Pr_3 P)_2 Pt - AlCl_3] (16)$		2.308(1), 2.324(1)	2.384(1)	166.42(1)
	$[(iPr_3P)_2Pt-AlBr_3] (17)$		2.302(2), 2.323(2)	2.368(2)	165.28(5)
a					

^aDistances in Å. ^bAngles in deg.

Figure 6. Molecular structure of 17 and 27. Ellipsoids are drawn at the at the 50% probability level. Ellipsoids of the ligands, solvent molecules and hydrogen atoms are omitted for clarity. Relevant bond lengths [Å] and angles [deg]: 17: Pt–P1 2.302(2), Pt–P2 2.323(2), Pt–Al 2.368(2), Al–Br1 2.325(2), Al–Br2 2.316(2), Al–Br3 2.325(2); P–Pt–P 165.28(5), Br2–Al–Br3 109.56(7), Br2–Al–Br1 103.74(7), Br3–Al–Br1 103.14(7); 27: Pt–P1 2.303(1), Pt–P2 2.308(1), Pt–Al 2.380(1), Al–Br1 2.319(1), Al–Br2 2.315(1), Al–Br3 2.317(1); P–Pt–P 160.09(3), Br2–Al–Br3 107.45(4), Br2–Al–Br1 109.09(4), Br3–Al–Br1 99.22(4).

similarly strong electron donation. Thus, the Al–Br distances of 17 (2.313(2)–2.325(2) Å) and 27 (2.3154(11)–2.3193(11)

Å) are comparable to that of $[tmp-AlBr_3]$ (2.280(2)–2.300(2) Å) (tmp = tetramethylpiperidine) and $[H_3N-AlBr_3]$ (2.312 Å mean). The Br-Al-Br angles of 17 (103.14(7)–109.56(7)°) and 27 (99.22(4)°–109.09(4)°) and $[tmp-AlBr_3]$ (101.59(7) °–110.02(8)°) are also in a similar range, whereas those of $[H_3N-AlBr_3]$ (116.6° mean) are significantly larger.

DFT Calculations. To provide further information as to the Lewis basicity of the different transition metal complexes employed for the synthesis of MOLPs, DFT calculations were carried out (Figure 7). In addition to the optimized structures of $[(iPr_3P)_2Pt]$ (24), $[(IMes)(iPr_3P)Pt]$ (13), and $[(SIMes)-(iPr_3P)Pt]$ (31), the complexes $[(Me_3P)_2Pt]$ (32), $[(IMe)-(Me_3P)Pt]$ (33), and $[(SIMe)(Me_3P)Pt]$ (34) were calculated as sterically less-demanding models, as well as their corresponding AlCl₃ adducts 35–38 (Figure 5) (IMe = N_1N' -bis(methyl)imidazol-2-ylidene, SIMe = N_1N' -bis(methyl)-imidazolylidene).

Interestingly, the saturation of the NHC backbone has no immediate effect on the basicity of the platinum center. Thus, both simplified NHC model complexes **33** and **34** give rise to almost identical BDEs (Table 4) upon adduct formation with $AlCl_3$, which are about 20 kJ/mol more negative than that of **32**. This indicates an increased interaction between the platinum and aluminum centers in NHC complexes, which is in good agreement with previously reported results.³³

Table 4. Selected Calculated Parameters of [L₂Pt-AlCl₃] (14, 16, 34-37) and [L₂Pt] (13, 24, 30-33)

distance	14	16	35	36	37	38
Pt-Al ^a	2.455	2.458	2.459	2.458	2.451	2.451
$Pt-L^{1a,b}$	2.032	2.362	2.029	2.326	2.041	2.045
$Pt-L^{2a}$	2.397	2.366	2.405	2.331	2.327	2.333
WBI ^c						
Pt-Al	0.54	0.52	0.54	0.51	0.54	0.54
$Pt-L^{1b}$	0.56	0.50	0.58	0.51	0.53	0.54
$Pt-L^{2b}$	0.49	0.50	0.48	0.51	0.53	0.52
natural charge						
Pt	-0.23	-0.31	-0.22	-0.34	-0.25	-0.25
Al	1.31	1.31	1.31	1.31	1.29	1.29
L^{1b}	0.34	0.37	0.33	0.37	0.35	0.33
L^{2b}	0.32	0.36	0.32	0.37	0.35	0.36
L_2Pt	0.43	0.42	0.43	0.40	0.45	0.44
AlCl ₃	-0.43	-0.42	-0.43	-0.40	-0.45	-0.44
BDE^d	-131	-146	-130	-167	-188	-189
$\operatorname{prep}^{e}(\mathrm{L}^{1}\mathrm{L}^{2}\mathrm{Pt})^{b,d}$	48	37	48	13	8	8
prep ^e (AlCl ₃) ^d	100	96	99	82	86	86
interaction ^d	-279	-278	-277	-262	-282	-282
WBI ^c	13	24	31	32	33	34
WBI ^c Pt- L^{1b}	0.66	0.60	0.68	0.61	0.62	0.64
WBI ^c Pt– L^{2b}	0.61	0.58	0.60	0.61	0.64	0.63
natural charge						
Pt	-0.42	-0.49	-0.41	-0.52	-0.47	-0.46
L^{1b}	0.20	0.25	0.18	0.26	0.23	0.22
L^{2b}	0.22	0.24	0.23	0.26	0.24	0.24

^{*a*}Distances in Å. ^{*b*}L¹ = NHC, phosphine; L² = phosphine. ^{*c*}Wiberg Bond Index. ^{*d*}Energies in kJ/mol. ^{*e*}Preparation energy, e.g., steric rearrangement during the reaction.

Figure 7. Optimized structures of the compounds 14, 16, and 35-38.

However, this trend is reversed in the case of the synthetically employed complexes 13, 24, and 31, which comprise much more sterically demanding phosphine and NHC ligands. Here, the bis(phosphine) complex 13 is determined, by means of the BDE for the Pt-Al bond in the corresponding adduct 16, to be a stronger transition metal Lewis base than the NHC complexes. The reason for this reversed trend is the significantly increased preparation enthalpy (e.g., the sterical rearrangement of the fragments during adduct formation) in the NHC-containing complexes 13 and 31 (24: 37 kJ/mol, 13 and 31: 48 kJ/mol). Combined with almost identical values for the interaction enthalpies, this leads to an overall less negative BDE for the NHC complexes. Hence, as judged by the interaction energies alone, PiPr₃ appears to exert the same electronic influence on the platinum center as the NHCs IMes and SIMes. This finding is in stark contrast to earlier calculations on corresponding PCy₃ complexes. Here, the bis(phosphine) complex $[(Cy_3P)_2Pt-AlCl_3]$ (19) revealed a significantly reduced interaction enthalpy (ca. 20 kJ/mol) in comparison to the mixed-ligand complexes with PCy₃ and NHC I^tBu ligands (I^tBu = N,N'-bis(tert-butyl)imidazol-2ylidene).³³ Analysis of the natural charges, as calculated by the natural bond orbital (NBO) method, reveals a uniform trend for all investigated systems, both the models 36-38 and the authentic complexes 14, 16, and 35. Upon adduct formation, the overall natural charge of the neutral L2Pt fragment (by definition natural charge = 0) in all compounds is increased to about 0.41-0.45, because of electron donation from the metal atom to the Lewis acid AlCl₃. This positive charge is distributed between the platinum center and the ligands, respectively. For example in complex 14, the natural charge of the IMes ligand is increased by 0.14 (0.20 in 13 to 0.34 in 14), whereas an almost identical increase is found for the $PiPr_3$ ligand (0.22 in 13 to 0.32 in 14). Therefore, again similar electronic properties for IMes and $PiPr_3$ are found. In addition to the decreased negative charge of the platinum atom (-0.42 in 13 to -0.22 in 14) this sums up to an overall positive charge of 0.44 for the [(IMes)(*i*PrP₃)Pt] fragment in the MOLP 14 (Table 4).

In further calculations, the influence of the halogen atoms on the properties of the MOLPs $[(Cy_3P)_2Pt-AlX_3]$ (X = Cl (19), Br (27), and I (28)) and $[(iPr_3P)_2Pt-AlX_3]$ (X = Cl (16), Br (17)) was investigated.³¹ Here, a clear trend was observed, that is, the Pt-Al BDE decreases as the group is descended (Table 5). The strongest interaction was found for the AlCl₃ adduct (19: BDE = -141 kJ/mol, 16: BDE = -146 kJ/mol), followed by the AlBr₃ (27: BDE = -124 kJ/mol, 17: BDE = -126 kJ/mol) and the AlI₃ species (28, BDE = -106 kJ/mol). A

Table 5. Selected Calculated Parameters of $[(Cy_3P)_2Pt-AlX_3]$ and $[(iPr_3P)_2Pt-AlX_3]$

	19	27	28	16	17
Х	Cl	Br	I	Cl	Br
Pt-Al ^a	2.459	2.462	2.461	2.458	2.459
WBI^{b} Pt-Al	0.52	0.54	0.55	0.52	0.53
WBI ^b Pt-P	0.5	0.49	0.48	0.50	0.49
natural charge					
Pt	-0.31	-0.29	-0.26	-0.31	-0.29
Al	1.31	1.1	0.67	1.31	1.09
BDE ^c	-141	-124	-106	-146	-129
$\operatorname{prep}^{d} [L_2 \operatorname{Pt}]^c$	40	45	51	37	42
$\operatorname{prep}^{d}(\operatorname{AlX}_{3})^{c}$	98	100	98	96	98
interaction ^c	-279	-269	-256	-278	-269
<i>i</i> D' i ·	\$ bxAT.1	р I	т 1 <i>С</i> г		1 T / 1

^{*a*}Distances in Å. ^{*b*}Wiberg Bond Index. ^{*c*}Energies in kJ/mol. ^{*d*}Preparation energy, e.g., steric rearrangement during the reaction.

possible explanation for this trend is the reduced electrostatic interaction in the adducts with less electronegative halogens. The disparity between the natural charges of platinum and aluminum is most distinct in **19** and **16** (1.6) and is reduced when the chlorine is substituted by bromine (**27** and **17**: 1.4) or iodine (**28**: 0.9). Furthermore, the preparation enthalpy of $[(Cy_3P)_2Pt]$ (**12**) upon adduct formation is more positive for heavier halogens. As expected, AlI₃ is the weakest Lewis acid with respect to MOLP formation in the investigated systems (Table 5). This result supports the earlier reports by Frenking et al. for group 10 complexes of the type $[(Me_3P)_2Pt-EX_3]$ (E = B, Al; X = Cl, Br, I).²⁶

CONCLUSION

Herein, we report on the synthesis of the new heteroleptic NHC-phosphine complex $[(IMes)(iPr_3P)Pt]$ (13) and its characterization by multinuclear NMR spectroscopy, elemental analysis, and single crystal X-ray diffraction analysis. Additionally, the alane adducts of 13 and the homoleptic Pt(0)compound $[(iPr_3P)_2Pt]$ (24) were prepared and fully characterized (14-17) including multinuclear NMR, structural, and computational data. For compounds 16 and 17 both ²⁷Al NMR and ¹⁹⁵Pt NMR spectra were obtained, both of which displayed the ${}^{1}J({}^{27}Al-{}^{195}Pt)$ spin-spin coupling-to the best of our knowledge this is the first time this coupling has been observed. According to computational analysis, the PiPr₃ ligand seems to exert a similar electronic influence on the platinum centers as the investigated NHCs, that is, IMes and SIMes. This finding contrasts previous studies on PCy₃ complexes, in which the phosphine appeared to be a weaker electron donor than NHC ligands. In the course of our theoretical investigations, we further examined the MOLPs $[(Cy_3P)_2Pt-AlBr_3]$ (27) and $[(Cy_3P)_2Pt-AlI_3]$ (28). Here, the expected trend for the decrease of the Lewis acidity of the alanes with increase of the atomic number of the halogen atoms was confirmed.

EXPERIMENTAL SECTION

General Considerations. All manipulations were performed in an inert atmosphere of argon using standard Schlenk and glovebox techniques. Solvents were distilled over alkali metal, degassed, and stored over molecular sieves (4 Å) under argon. Deuterated solvents were degassed by three freeze-pump-thaw cycles and stored under argon over molecular sieves. NMR experiments were performed on a Bruker Avance 500 (1H: 500.1 MHz; 13C: 125.8 MHz; 27Al: 130.3 MHz; ³¹P: 202.5 MHz; ¹⁹⁵Pt: 107.5 MHz) apparatus. ¹H NMR and ¹³C{¹H} NMR spectra were calibrated to TMS; in the case of ²⁷Al NMR spectra $Al(NO_3)_3$ in D_2O was used as external standard, and for $^{31}P{^{1}H}$ NMR spectra 85% H₃PO₄ was used. The external standard for the $^{195}Pt{^1H}$ NMR spectra was $Na_2[PtCl_6]$ in D_2O . Elemental analyses were performed on an Elementar vario Micro Cube elemental analyzer and Leco Instrumente CHNS 932 elemental analyzer. [(Cy₃P)₂Pt],⁴⁷ [(*i*Pr₃P)₃Pt]⁴⁷ and IMes⁵⁷ were prepared according to known methods.

[(IMes)(iPr₃P)Pt] (13). IMes (19 mg, 58 μ mol) and [(iPr₃P)₃Pt] (25) (40 mg, 58 μ mol) were dissolved in hexane (1.0 mL). The intensely yellow solution was kept at -30 °C for 5 d and yellow crystals were obtained after 3 days (29 mg, 44 μ mol, 70%). ¹H NMR (500.1 MHz, C₆D₆): δ = 6.84–6.83 (m, 4H, *m*-H_{at}), 6.21 (d, ³J_{H-H} = 1 Hz, 2H, NCHCHN), 2.37 (s, 12H, *o*-CH₃, Mes), 2.17 (s, 6H, *p*-CH₃, Mes), 1.74–1.65 (m, 3H, CH, iPr), 1.09–1.07 (m, 18H, CH₃, iPr) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 201.5 (s, NCN), 138.3 (s, *ipso*-C_{at}), 137.4 (s, *p*-C_{at}), 135.6 (s, *o*-C_{at}), 128.8 (s, *m*-C_{at}), 119.2 (s, NCHCHN), 25.6 (d, ¹J_{C-P} = 24 Hz, CH, iPr), 21.3 (d, ²J_{C-P} = 11 Hz; CH₃, *i*Pr), 21.2 (s, *p*-CH₃, Mes), 18.8 ppm (s, *o*-CH₃, Mes) ppm. ³¹P{¹H} NMR (202.5 MHz, C₆D₆): δ = 69.4 (¹J_{P-Pt} = 3897 Hz) ppm. ¹⁹⁵Pt{¹H} NMR (107.5 MHz, C_6D_6): $\delta = -6290$ (¹ $J_{Pt-P} = 3897$ Hz) ppm. Elemental analysis (%) calculated for $C_{30}H_{46}N_2PPt$: C 54.53, H 7.02, N 4.24; found: C 53.89, H 6.67, N 4.06.

[(*IMes*)(*iPr*₃*P*)*Pt*(*AlCl*₃)] (14). AlCl₃ (2.0 mg, 15 μmol) and [(IMes)(*iPr*₃*P*)*Pt*] (13) (10 mg, 15 μmol) were dissolved in benzene (1.0 mL) at ambient temperature. A yellow solid precipitated immediately, was filtered off and rinsed with benzene. The precipitate was dissolved in toluene and yellow crystals were obtained after 24 h at -30 °C (7 mg, 10 μmol, 65%). ¹H NMR (500.1 MHz, C₆D₆): $\delta =$ 6.81 (m, 4H, H_{ar}), 6.13 (d, 2H, ³J_{H-H} = 1 Hz, NCHCHN), 2.34 (s, 12H, *o*-CH₃, Mes), 2.14 (s, 6H, *m*-CH₃, Mes), 1.30–1.20 (m, 3H, CH, *iPr*), 1.02–0.98 (m, 18H, CH₃, *iPr*) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta =$ 179.7 (s, NCN), 135.4 (s, *ipso*-C_{ar}), 134.4 (s, *p*-C_{ar}), 129.7 (s, *o*-C_{ar}), 128.3 (s, *m*-C_{ar}), 122.9 (s, NCHCHN), 25.1 (d, ¹J_{C-P} = 25 Hz, CH, *iPr*), 20.0 (s, *p*-CH₃, Mes), 19.9 (s, CH₃, *iPr*), 17.7 (s, *o*-CH₃, Mes) ppm. ²⁷Al NMR (130.3 MHz, C₆D₆): $\delta =$ 66.9 (¹J_{Al-Pt} = 2100 Hz) ppm. ³¹P{¹H} NMR (202.5 MHz, C₆D₆): $\delta =$ 56.9 (¹J_{P-Pt} = 2988 Hz) ppm. Elemental analysis (%) calculated for C₃₇H₅₀AlCl₃N₂PPt: C 50.37; H 5.71; N 3.18; found: C 50.11; H 5.72; N 3.51.

[(*IMes*)(*iPr*₃*P*)*Pt*(*AIBr*₃)] (**15**). AlBr₃ (8.0 mg, 30 μmol) was added to a solution of [(IMes)(*i*Pr₃P)Pt] (**13**) (20 mg, 30 μmol) in toluene (1.0 mL) at -30 °C. A yellow solid precipitated after 48 h, which was filtered off and rinsed with toluene. The precipitate was dissolved in toluene and yellow crystals were obtained after 24 h at -30 °C (19 mg, 21 μmol, 71%). ¹H NMR (500.1 MHz, C₆D₆): δ = 6.74 (s, 4H, *H*_{ar}), 6.26 (s, 2H, NCHCHN), 2.29 (s, 12H, *o*-CH₃, Mes), 2.10 (s, 6H, *m*-CH₃, Mes), 1.80–1.69 (m, 3H, CH, *i*Pr), 0.89–0.81 (m, 18H, CH₃, *i*Pr) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 167.9 (s, NCN), 138.4 (s, *ipso*-C_{ar}), 136.6 (s, *p*-C_{ar}), 136.0 (s, *o*-C_{ar}), 129.5 (s, *m*-C_{ar}), 122.9 (s, NCHCHN), 25.6 (d, ¹J_{C-P} = 25 Hz, CH, *i*Pr), 20.9 (s, *p*-CH₃, Mes), 19.6 (s, CH₃, *i*Pr), 19.2 ppm (s, *o*-CH₃, Mes) ppm. ²⁷Al NMR (130.3 MHz, C₆D₆): δ = 42.7 (¹J_{Al-Pt} = 2200 Hz) ppm. ³¹P{¹H} NMR (202.5 MHz, C₆D₆): δ = 53.5 (¹J_{P-Pt} = 2980 Hz) ppm. Elemental analysis (%) calculated for C₃₇H₅₀AlCl₃N₂PPt: C 38.89; H 4.90; N 3.02; found: C 38.92; H 4.85; N 3.06.

[(*i*Pr₃P)₂Pt(*A*[*C*]₃)] (**16**). In a J. Young NMR tube AlCl₃ (4.0 mg, 30 μ mol) was added to a yellow solution of [(*i*Pr₃P)₂Pt] (**24**) (20 mg, 30 μ mol) in benzene (0.6 mL). The color of the reaction mixture lightened, and a yellow solid precipitated. The precipitate was filtered off and rinsed with hexane. For X-ray analysis suitable crystals were obtained from a solution in benzene at ambient temperature after 24 h (13 mg, 20 μ mol), 67%). ¹H NMR (500.1 MHz, C₆D₆): δ = 2.48–2.40 (sep, ³J_{H-H} = 4 Hz, 6H, CH), 1.23–1.08 (q, ³J_{H-H} = 8 Hz, 36H, CH₃) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 26.0 (vt, N = $l^{1}J_{C-P}+^{3}J_{C-P}l$ = 25 Hz, CH, *i*Pr), 20.9 (s, CH₃, *i*Pr) ppm. ⁵⁸ ²⁷Al NMR (130.3 MHz, C₆D₆): δ = 68.5 (¹J_{A-Pt} = 1933 Hz) ppm. ¹⁹Pt¹H} NMR (107.5 MHz, C₆D₆): δ = -5550 (¹J_{P-P} = 3034 Hz, ¹J_{Pt-Al} = 1933 Hz) ppm. Elemental analysis (%) calculated for C₁₈H₄₂AlCl₃P₂Pt: C 33.32; H 6.52; found: C 33.38; H 6.61.

[(*i*Pr₃P)₂Pt(*Al*Br₃)] (**17**). In a J. Young NMR tube AlBr₃ (14 mg, 52 μ mol) was added to a yellow solution of [(*i*Pr₃P)₂Pt] (**24**) (35 mg, 52 μ mol) in benzene (0.7 mL) at 0 °C. The color of the reaction mixture deepened and a yellow solid precipitated. The precipitate was filtered off and rinsed with hexane. For X-ray analysis suitable crystals were obtained from a solution in benzene at ambient temperature after 24 h (15 mg, 20 μ mol, 52%). ¹H NMR (500.1 MHz, C₆D₆): δ = 2.67–2.58 (sep, ³J_{H-H} = 4 Hz, 6H, CH), 1.19–1.14 (q, ³J_{H-H} = 8 Hz, 36H, CH₃) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 25.9 (vt, N = l¹J_{C-P}+³J_{C-P}| = 25 Hz, CH, *i*Pr), 20.9 (s, CH₃, *i*Pr) ppm. ⁵⁸ ²⁷Al NMR (130.3 MHz, C₆D₆): δ = 63.1 (¹J_{P-Pt} = 3061 Hz) ppm. ¹⁹Pt{¹H} NMR (107.5 MHz, C₆D₆): δ = -5410 (¹J_{P-P} = 3061 Hz, ¹J_{P-AI} = 1999 Hz) ppm. Elemental analysis (%) calculated for C₁₈H₄₂AlBr₃P₂Pt: C 27.64; H 5.41; found: C 26.95; H 5.26.

 $[(Cy_3P)_2Pt(A|Br_3)]$ (27). AlBr₃ (8.0 mg, 29 μ mol) was added to a pale yellow solution of $[(Cy_3P)_2Pt]$ (12) (21 mg, 28 μ mol) in toluene (0.6 mL). The solvent from the orange solution was removed in vacuo to obtain 27 (28 mg, 27 μ mol, 98%) as a light orange solid. Suitable crystals were obtained by means of diffusion of hexane to a toluene

solution at -30 °C. ¹H NMR (500.1 MHz, d₈-tol): $\delta = 2.69-2.65$ (m, 6H, Cy), 2.22–1.03 ppm (m, 60H, Cy). ¹³C{¹H} NMR (125.8 MHz, d₈-tol): $\delta = 36.3$ (vt, $N = |{}^{1}J_{C-P}+{}^{3}J_{C-P}| = 25$ Hz, C¹, Cy), 31.6 (s, C³, C⁵, Cy), 27.9 (vt, $N = |{}^{2}J_{P-C}+{}^{4}J_{P-C}| = 11$ Hz, C², C⁶, Cy), 26.6 ppm (s, C⁴, Cy).⁵⁸ ²⁷Al NMR (130.3 MHz, d₈-tol): $\delta = 41.3$ (${}^{1}J_{Al-Pt} = 2150$ Hz) ppm. ${}^{31}P{}^{1}H$ NMR (202.5 MHz, d₈-tol): $\delta = 51.2$ ppm (${}^{1}J_{P-Pt} = 3046$ Hz). Elemental analysis (%) calculated for C₃₆H₆₆AlBr₃P₂Pt: C 42.28, H 6.50; found: C 42.74, H 6.77.

Crystal Structure Determination. The crystal data of **13**, **14**, **16**, and **27** were collected on a Bruker Apex diffractometer with a CCD area detector and graphite monochromated $Mo_{K\alpha}$ radiation. The structures were solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques.⁵⁹ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factor calculations.

Crystal Data for **13.** $C_{30}H_{45}N_2PPt$, $M_r = 659.74$, yellow block, 0.31 × 0.16 × 0.06 mm³, triclinic space group $P\overline{1}$, a = 10.3236(18) Å, b = 10.8091(18) Å, c = 15.026(3) Å, $\alpha = 78.494(4)^{\circ}$, $\beta = 77.506(4)^{\circ}$, $\gamma = 66.744(3)^{\circ}$, V = 1491.8(4) Å³, Z = 2, $\rho_{calcd} = 1.469$ g·cm⁻³, $\mu = 4.776$ mm⁻¹, F(000) = 664, T = 173(2) K, $R_1 = 0.0203$, $wR^2 = 0.0492$, 5858 independent reflections $[2\theta \le 52.06^{\circ}]$ and 319 parameters.

Crystal Data for **14**. $C_{37}H_{50}AlCl_3N_2PPt$, $M_r = 882.18$, yellow block, 0.37 × 0.16 × 0.15 mm³, monoclinic space group $P2_1/n$, a = 10.7618(3) Å, b = 16.4437(4) Å, c = 22.3018(5) Å, $\beta = 100.4370(10)$ °, V = 3881.31(17) Å³, Z = 4, $\rho_{calcd} = 1.510$ g·cm⁻³, $\mu = 3.913$ mm⁻¹, F(000) = 1772, T = 100(2) K, $R_1 = 0.0288$, $wR^2 = 0.0664$, 7949 independent reflections $[2\theta \le 52.78^\circ]$ and 483 parameters.

Crystal Data for **16**. C₁₈H₄₂AlCl₃P₂Pt, $M_r = 648.88$, yellow block, 0.22 × 0.17 × 0.085 mm³, monoclinic space group C2/*c*, *a* = 31.069(8) Å, *b* = 10.862(3) Å, *c* = 17.407(5) Å, *β* = 118.672(3)°, *V* = 5154(2) Å³, *Z* = 8, ρ_{calcd} = 1.672 g·cm⁻³, μ = 5.916 mm⁻¹, *F*(000) = 2576, *T* = 173(2) K, *R*₁ = 0.0172, *wR*² = 0.0375, 6442 independent reflections [2 θ ≤ 56.74°] and 238 parameters.

Crystal Data for **17**. $C_{18}H_{42}AlBr_3P_2Pt$, $M_r = 782.26$, yellow block, 0.29 × 0.15 × 0.08 mm³, Monoclinic space group C2/c, a = 31.4522(17) Å, b = 10.9575(5) Å, c = 17.4716(9) Å, $\beta = 118.731(3)^{\circ}$, V = 5280.1(5) Å³, Z = 8, $\rho_{calcd} = 1.968$ g·cm⁻³, $\mu = 10.012$ mm⁻¹, F(000) = 3008, T = 100(2) K, $R_1 = 0.0525$, $wR^2 = 0.1121$, 9534 independent reflections $[2\theta \le 53.92^{\circ}]$ and 239 parameters.

Crystal Data for **27**. $C_{93}H_{156}Al_2Br_6P_4Pt_2$, $M_r = 2321.58$, yellow plate, 0.49 × 0.025 × 0.021 mm³, triclinic space group $P\overline{I}$, a = 9.8756(11) Å, b = 11.2140(12) Å, c = 22.450(2) Å, $\alpha = 96.912(2)^{\circ}$, $\beta = 93.273(2)^{\circ}$, $\gamma = 94.380(2)^{\circ}$, V = 2455.4(5) Å³, Z = 1, $\rho_{calcd} = 1.570$ g·cm⁻³, $\mu = 5.411$ mm⁻¹, F(000) = 1166, T = 173(2) K, $R_1 = 0.0281$, $wR^2 = 0.0674$, 9757 independent reflections $[2\theta \le 52.4^{\circ}]$ and 445 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-854859 (13), CCDC-854860 (14), CCDC-854861 (16), CCDC-868866 (17), and CCDC-854862 (27). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

ASSOCIATED CONTENT

S Supporting Information

Cartesian coordinates of all optimized geometries as well as CIF files giving crystallographic data of 13, 14, 16, 17, and 27. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: h.braunschweig@mail.uni-wuerzburg.de. Fax: +49-(0) 931/31-85263. Phone: +49-(0)931/31-85260.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the German Science Foundation (DFG) for financial support. J.B. is grateful to the Fonds der Chemischen Industrie for a doctoral scholarship.

REFERENCES

- (1) Vaska, L.; DiLuzio, J. W. J. Am. Chem. Soc. 1961, 83, 2784-2785.
- (2) Baird, M. C.; Wilkinson, G. Chem. Commun. 1966, 267-268.
- (3) Vaska, L.; DiLuzio, J. W. J. Am. Chem. Soc. 1962, 84, 679-680.
- (4) Shriver, D. F. J. Am. Chem. Soc. 1963, 85, 3509-3510.
- (5) Braunschweig, H.; Wagner, T. Chem. Ber. 1994, 127, 1613-1614.
- (6) Werner, H. Pure Appl. Chem. **1982**, 54, 177–188.
- (7) Werner, H. Angew. Chem. 1983, 95, 932–954; Angew. Chem., Int. Ed. 1983, 22, 927–949.
- (8) Werner, H.; Dey, K. Chem. Ber. 1979, 112, 823-833.
- (9) Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292–1298.

(10) Golden, J. T.; Peterson, T. H.; Holland, P. L.; Bergmann, R. G.; Andersen, R. A. J. Am. Chem. Soc. **1998**, 120, 223-224.

(11) Amati, M.; Lelj, F. Can. J. Chem. 2009, 87, 1406-1414.

(12) Steinke, T.; Fischer, R. A.; Winter, M.; Cokoja, M.; Gemel, C. Dalton Trans. 2005, 55-62.

(13) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924–3957.

(14) Dang, L.; Zhenyang, L.; Marder, T. B. Chem. Commun. 2009, 3987–3995.

(15) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179-1191.

(16) Marder, T. B.; Norman, N. C. Top. Catal. 1998, 5, 63-73.

(17) Thomas, R. L.; Souza, F. E.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1650–1656.

(18) Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345–347.

(19) Clegg, W.; Lawlor, F. J.; Lesley, G.; Marder, T. B.; Norman, N. C.; Orpen, A. G.; Quayle, M. J.; Rice, C. R.; Scott, A. J.; Souza, F. E. J. Organomet. Chem. **1998**, 550, 183–192.

(20) Bauer, J.; Braunschweig, H.; Kraft, K.; Radacki, K. Angew. Chem., Int. Ed. 2011, 50, 10457–10460.

(21) Arnold, N.; Braunschweig, H.; Brenner, P.; Jimenez-Halla, J. O.; Kupfer, T.; Radacki, K. *Organometallics* **2012**, *31*, 1897–1907.

(22) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. Chem.—Eur. J. 2007, 13, 7171–7176.

(23) Braunschweig, H.; Radacki, K.; Uttinger, K. Inorg. Chem. 2007, 46, 8796–8800.

(24) Zeng, G.; Sakaki, S. Inorg. Chem. 2011, 50, 5290-5297.

(26) Goedecke, C.; Hillebrecht, P.; Uhlemann, T.; Haunschild, R.; Frenking, G. Can. J. Chem. 2009, 87, 1470–1479.

(27) Plumley, J. A.; Evanseck, J. D. J. Phys. Chem. A 2009, 113, 5985–5992.

(28) Mandal, S. K.; Roesky, H. W. Advances in Catalysis, 54th ed; Academic Press: London, U.K., 2011; pp 1-61.

- (29) Corma, A.; Garcia, H. Chem. Rev. 2003, 103, 4307-4366.
- (30) Braunschweig, H.; Gruss, K.; Radacki, K. Angew. Chem. 2009,

121, 4303–4305; Angew. Chem., Int. Ed. 2009, 48, 4239–4241.

(31) Braunschweig, H.; Gruss, K.; Radacki, K. Angew. Chem. 2007,

- 119, 7929-7931; Angew. Chem., Int. Ed. 2007, 46, 7782-7784.
- (32) Braunschweig, H.; Radacki, K.; Schwab, K. Chem. Commun. 2010, 46, 913–915.
- (33) Bauer, J.; Braunschweig, H.; Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. *Chem.—Eur. J.* **2010**, *16*, 11985–11992.

(34) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; L. Cavallo, L. *Eur. J. Inorg. Chem.* **2009**, *32*, 1759–1766.

(35) Ragone, F.; Poater, A.; Cavallo, L. J. Am. Chem. Soc. 2010, 132, 4249-4258.

(36) Tolman, C. A. Chem. Rev. 1977, 77, 314-348.

(37) Chianese, A. R.; Li, X.; Janzen, M. C.; Faller, J. W.; Crabtree, R.

H. Organometallics 2003, 22, 1663-1667.

⁽²⁵⁾ Braunschweig, H.; Gruss, K.; Radacki, K. Inorg. Chem. 2008, 47, 8595–8597.

Inorganic Chemistry

(38) Kelly, R. A., III; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. *Organometallics* **2008**, *27*, 202–210.

(39) Ros, R.; Tassan, A.; Laurenczy, G.; Roulet, R. Inorg. Chim. Acta 2000, 303, 94–99.

(40) Braunschweig, H.; Radacki, K.; Rais, D.; Uttinger, K. Angew. Chem. 2006, 118, 169; Angew. Chem., Int. Ed. 2006, 45, 162–165.

(41) Braunschweig, H.; Kupfer, T.; Radacki, K.; Schneider, A.; Seeler, F.; Uttinger, K.; Wu, H. J. Am. Chem. Soc. **2008**, 130, 7974–7983.

(42) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115, 9858-9859.

(43) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956.

(44) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543-6554.

(45) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 10, 1815–1828.

(46) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841-861.

(47) Yoshida, T.; Otsuka, S. Inorg. Synth 1990, 28, 113-126.

(48) Otsuka, S. J. Organomet. Chem. 1980, 200, 191-205.

(49) Arduengo, A. J., III; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. **1994**, 116, 4391–4394.

(50) Öhman, L.-O..; Edlund, U. Aluminium-27 NMR of solids. In *Encyclopedia of NMR*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; Vol. 2, pp 742–750.

(51) Rehder, D. Chimia 1986, 40, 186-199.

(52) Pregosin, P. S. Group 10 Nickel to Platinum. In *Transition Metal NMR*; Elsevier: München, Germany, 1991; Vol. 13, pp 217–263.

(53) Vriezen, W. H.; Jellinek, F. Chem. Phys. Lett. 1967, 1, 284.

(54) (a) Jasim, N. A.; Perutz, R. N. J. Am. Chem. Soc. 2000, 122, 8685–8693. (b) Cameron, T. S.; Clark, H. C.; Linden, A.; Nicholas, A. M. Polyhedron 1990, 9, 1683–1688.

(55) Timoshkin, A.; Suvorov, A.; Bettinger, H. F.; Schaefer, H. F. J. Am. Chem. Soc. **1999**, 121, 5687–5699.

(56) Krossing, I.; Nöth, H.; Schwenk-Kirchner, H.; Seifert, T.; Tacke, C. Eur. J. Inorg. Chem. **1998**, *12*, 1925–1930.

(57) (a) Arduengo III, A. J. U.S. Patent 5 077 414, 1991;
(b) Arduengo, A. J., III; Bock, H.; Chen, H.; Denk, M.; Dixon, D. A.; Green, J. C.; Herrman, W. A.; Jones, N. L.; Wagner, M.; West, R. J.

Am. Chem. Soc. **1994**, 116, 6641–6649.

(58) Fackler, J. P., Jr.; Fetchin, J. A.; Mayhew, J.; Seidel, W. C.; Swift, T. J.; Weeks, M. J. Am. Chem. Soc. **1969**, *91*, 1941–1947.

(59) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.